The Local Gromov–Witten Invariants of Configurations of Rational Curves

نویسندگان

  • DAGAN KARP
  • CHIU-CHU MELISSA LIU
  • MARCOS MARIÑO
چکیده

We compute the local Gromov–Witten invariants of certain configurations of rational curves in a Calabi–Yau threefold. These configurations are connected subcurves of the “minimal trivalent configuration”, which is a particular tree of P1 ’s with specified formal neighborhood. We show that these local invariants are equal to certain global or ordinary Gromov–Witten invariants of a blowup of P3 at points, and we compute these ordinary invariants using the geometry of the Cremona transform. We also realize the configurations in question as formal toric schemes and compute their formal Gromov–Witten invariants using the mathematical and physical theories of the topological vertex. In particular, we provide further evidence equating the vertex amplitudes derived from physical and mathematical theories of the topological vertex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization Computations of Gromov-Witten Invariants

Introduction Gromov-Witten invariants are enumerative invariants of stable maps. Their definition in the context of mirror symmetry in physics allowed new approaches to old problems — for instance, counting the number of plane rational curves of degree d through 3d − 1 points — and solved all at once enumerative problems that had thwarted mathematicians for years. Any such innovation gives rise...

متن کامل

Counting rational curves with multiple points and Gromov-Witten invariants of blow-ups

We study Gromov-Witten invariants on the blow-up of Pn at a point, which is probably the simplest example of a variety whose moduli spaces of stable maps do not have the expected dimension. It is shown that many of these invariants can be interpreted geometrically on Pn as certain numbers of rational curves having a multiple point of given order at the blown up point. Moreover, all these invari...

متن کامل

Counting Curves of Any Genus on Rational Ruled Surfaces

In this paper we study the geometry of the Severi varieties parametrizing curves on the rational ruled surface Fn. We compute the number of such curves through the appropriate number of fixed general points on Fn (Theorem 1.1), and the number of such curves which are irreducible (Theorem 1.3). These numbers are known as Severi degrees; they are the degrees of unions of components of the Hilbert...

متن کامل

m at h . A G ] 8 A pr 1 99 8 Gromov - Witten invariants of blow - ups

In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...

متن کامل

. A G ] 2 4 A pr 1 99 8 Gromov - Witten invariants of blow - ups

In the first part of the paper, we give an explicit algorithm to compute the (genus zero) Gromov-Witten invariants of blow-ups of an arbitrary convex projective variety in some points if one knows the Gromov-Witten invariants of the original variety. In the second part, we specialize to blow-ups of Pr and show that many invariants of these blow-ups can be interpreted as numbers of rational curv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005